Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Effect of Gender, Pose and Camera Distance on Human Body Dimensions Estimation (2205.12028v1)

Published 24 May 2022 in cs.CV

Abstract: Human Body Dimensions Estimation (HBDE) is a task that an intelligent agent can perform to attempt to determine human body information from images (2D) or point clouds or meshes (3D). More specifically, if we define the HBDE problem as inferring human body measurements from images, then HBDE is a difficult, inverse, multi-task regression problem that can be tackled with machine learning techniques, particularly convolutional neural networks (CNN). Despite the community's tremendous effort to advance human shape analysis, there is a lack of systematic experiments to assess CNNs estimation of human body dimensions from images. Our contribution lies in assessing a CNN estimation performance in a series of controlled experiments. To that end, we augment our recently published neural anthropometer dataset by rendering images with different camera distance. We evaluate the network inference absolute and relative mean error between the estimated and actual HBDs. We train and evaluate the CNN in four scenarios: (1) training with subjects of a specific gender, (2) in a specific pose, (3) sparse camera distance and (4) dense camera distance. Not only our experiments demonstrate that the network can perform the task successfully, but also reveal a number of relevant facts that contribute to better understand the task of HBDE.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube