Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A divergence preserving cut finite element method for Darcy flow (2205.12023v8)

Published 24 May 2022 in math.NA and cs.NA

Abstract: We study cut finite element discretizations of a Darcy interface problem based on the mixed finite element pairs $\textbf{RT}_k\times Q_k$, $k\geq 0$. Here $Q_k$ is the space of discontinuous polynomial functions of degree less or equal to $k$ and $\textbf{RT}$ is the Raviart-Thomas space. We show that the standard ghost penalty stabilization, often added in the weak forms of cut finite element methods for stability and control of the condition number of the linear system matrix, destroys the divergence-free property of the considered element pairs. Therefore, we propose new stabilization terms for the pressure and show that we recover the optimal approximation of the divergence without losing control of the condition number of the linear system matrix. We prove that the method with the new stabilization term has pointwise divergence-free approximations of solenoidal velocity fields. We derive a priori error estimates for the proposed unfitted finite element discretization based on $\textbf{RT}_k\times Q_k$, $k\geq 0$. In addition, by decomposing the mesh into macro-elements and applying ghost penalty terms only on interior edges of macro-elements, stabilization is applied very restrictively and only where needed. Numerical experiments with element pairs $\textbf{RT}_0\times Q_0$, $\textbf{RT}_1\times Q_1$, and $\textbf{BDM}_1\times Q_0$ (where $\textbf{BDM}$ is the Brezzi-Douglas-Marini space) indicate that we have 1) optimal rates of convergence of the approximate velocity and pressure; 2) well-posed linear systems where the condition number of the system matrix scales as it does for fitted finite element discretizations; 3) optimal rates of convergence of the approximate divergence with pointwise divergence-free approximations of solenoidal velocity fields. All three properties hold independently of how the interface is positioned relative to the computational mesh.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.