Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action Recognition using WiFi (2205.11945v1)

Published 24 May 2022 in cs.CV and eess.SP

Abstract: WiFi-based human action recognition (HAR) has been regarded as a promising solution in applications such as smart living and remote monitoring due to the pervasive and unobtrusive nature of WiFi signals. However, the efficacy of WiFi signals is prone to be influenced by the change in the ambient environment and varies over different sub-carriers. To remedy this issue, we propose an end-to-end Gabor residual anti-aliasing sensing network (GraSens) to directly recognize the actions using the WiFi signals from the wireless devices in diverse scenarios. In particular, a new Gabor residual block is designed to address the impact of the changing surrounding environment with a focus on learning reliable and robust temporal-frequency representations of WiFi signals. In each block, the Gabor layer is integrated with the anti-aliasing layer in a residual manner to gain the shift-invariant features. Furthermore, fractal temporal and frequency self-attention are proposed in a joint effort to explicitly concentrate on the efficacy of WiFi signals and thus enhance the quality of output features scattered in different subcarriers. Experimental results throughout our wireless-vision action recognition dataset (WVAR) and three public datasets demonstrate that our proposed GraSens scheme outperforms state-of-the-art methods with respect to recognition accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube