Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accuracy on In-Domain Samples Matters When Building Out-of-Domain detectors: A Reply to Marek et al. (2021) (2205.11887v1)

Published 24 May 2022 in cs.CL

Abstract: We have noticed that Marek et al. (2021) try to re-implement our paper Zheng et al. (2020a) in their work "OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation". Our paper proposes a model to generate pseudo OOD samples that are akin to IN-Domain (IND) input utterances. These pseudo OOD samples can be used to improve the OOD detection performance by optimizing an entropy regularization term when building the IND classifier. Marek et al. (2021) report a large gap between their re-implemented results and ours on the CLINC150 dataset (Larson et al., 2019). This paper discusses some key observations that may have led to such a large gap. Most of these observations originate from our experiments because Marek et al. (2021) have not released their codes1. One of the most important observations is that stronger IND classifiers usually exhibit a more robust ability to detect OOD samples. We hope these observations help other researchers, including Marek et al. (2021), to develop better OOD detectors in their applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.