Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hierarchical Planning Through Goal-Conditioned Offline Reinforcement Learning (2205.11790v1)

Published 24 May 2022 in cs.RO, cs.SY, and eess.SY

Abstract: Offline Reinforcement learning (RL) has shown potent in many safe-critical tasks in robotics where exploration is risky and expensive. However, it still struggles to acquire skills in temporally extended tasks. In this paper, we study the problem of offline RL for temporally extended tasks. We propose a hierarchical planning framework, consisting of a low-level goal-conditioned RL policy and a high-level goal planner. The low-level policy is trained via offline RL. We improve the offline training to deal with out-of-distribution goals by a perturbed goal sampling process. The high-level planner selects intermediate sub-goals by taking advantages of model-based planning methods. It plans over future sub-goal sequences based on the learned value function of the low-level policy. We adopt a Conditional Variational Autoencoder to sample meaningful high-dimensional sub-goal candidates and to solve the high-level long-term strategy optimization problem. We evaluate our proposed method in long-horizon driving and robot navigation tasks. Experiments show that our method outperforms baselines with different hierarchical designs and other regular planners without hierarchy in these complex tasks.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.