Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PERT: A New Solution to Pinyin to Character Conversion Task (2205.11737v1)

Published 24 May 2022 in cs.CL and cs.AI

Abstract: Pinyin to Character conversion (P2C) task is the key task of Input Method Engine (IME) in commercial input software for Asian languages, such as Chinese, Japanese, Thai language and so on. It's usually treated as sequence labelling task and resolved by LLM, i.e. n-gram or RNN. However, the low capacity of the n-gram or RNN limits its performance. This paper introduces a new solution named PERT which stands for bidirectional Pinyin Encoder Representations from Transformers. It achieves significant improvement of performance over baselines. Furthermore, we combine PERT with n-gram under a Markov framework, and improve performance further. Lastly, the external lexicon is incorporated into PERT so as to resolve the OOD issue of IME.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.