Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Explaining Causal Models with Argumentation: the Case of Bi-variate Reinforcement (2205.11589v1)

Published 23 May 2022 in cs.AI

Abstract: Causal models are playing an increasingly important role in machine learning, particularly in the realm of explainable AI. We introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for the models' outputs. The conceptualisation is based on reinterpreting desirable properties of semantics of AFs as explanation moulds, which are means for characterising the relations in the causal model argumentatively. We demonstrate our methodology by reinterpreting the property of bi-variate reinforcement as an explanation mould to forge bipolar AFs as explanations for the outputs of causal models. We perform a theoretical evaluation of these argumentative explanations, examining whether they satisfy a range of desirable explanatory and argumentative properties.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.