Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Explaining Causal Models with Argumentation: the Case of Bi-variate Reinforcement (2205.11589v1)

Published 23 May 2022 in cs.AI

Abstract: Causal models are playing an increasingly important role in machine learning, particularly in the realm of explainable AI. We introduce a conceptualisation for generating argumentation frameworks (AFs) from causal models for the purpose of forging explanations for the models' outputs. The conceptualisation is based on reinterpreting desirable properties of semantics of AFs as explanation moulds, which are means for characterising the relations in the causal model argumentatively. We demonstrate our methodology by reinterpreting the property of bi-variate reinforcement as an explanation mould to forge bipolar AFs as explanations for the outputs of causal models. We perform a theoretical evaluation of these argumentative explanations, examining whether they satisfy a range of desirable explanatory and argumentative properties.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.