Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Exploring Concept Contribution Spatially: Hidden Layer Interpretation with Spatial Activation Concept Vector (2205.11511v1)

Published 21 May 2022 in cs.CV

Abstract: To interpret deep learning models, one mainstream is to explore the learned concepts by networks. Testing with Concept Activation Vector (TCAV) presents a powerful tool to quantify the contribution of query concepts (represented by user-defined guidance images) to a target class. For example, we can quantitatively evaluate whether and to what extent concept striped contributes to model prediction zebra with TCAV. Therefore, TCAV whitens the reasoning process of deep networks. And it has been applied to solve practical problems such as diagnosis. However, for some images where the target object only occupies a small fraction of the region, TCAV evaluation may be interfered with by redundant background features because TCAV calculates concept contribution to a target class based on a whole hidden layer. To tackle this problem, based on TCAV, we propose Spatial Activation Concept Vector (SACV) which identifies the relevant spatial locations to the query concept while evaluating their contributions to the model prediction of the target class. Experiment shows that SACV generates a more fine-grained explanation map for a hidden layer and quantifies concepts' contributions spatially. Moreover, it avoids interference from background features. The code is available on https://github.com/AntonotnaWang/Spatial-Activation-Concept-Vector.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.