Papers
Topics
Authors
Recent
2000 character limit reached

Diversity Over Size: On the Effect of Sample and Topic Sizes for Topic-Dependent Argument Mining Datasets (2205.11472v3)

Published 23 May 2022 in cs.CL

Abstract: The task of Argument Mining, that is extracting and classifying argument components for a specific topic from large document sources, is an inherently difficult task for machine learning models and humans alike, as large Argument Mining datasets are rare and recognition of argument components requires expert knowledge. The task becomes even more difficult if it also involves stance detection of retrieved arguments. In this work, we investigate the effect of Argument Mining dataset composition in few- and zero-shot settings. Our findings show that, while fine-tuning is mandatory to achieve acceptable model performance, using carefully composed training samples and reducing the training sample size by up to almost 90% can still yield 95% of the maximum performance. This gain is consistent across three Argument Mining tasks on three different datasets. We also publish a new dataset for future benchmarking.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 4 tweets with 65 likes about this paper.