Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploiting the Curvature of Feasible Sets for Faster Projection-Free Online Learning (2205.11470v1)

Published 23 May 2022 in cs.LG and math.OC

Abstract: In this paper, we develop new efficient projection-free algorithms for Online Convex Optimization (OCO). Online Gradient Descent (OGD) is an example of a classical OCO algorithm that guarantees the optimal $O(\sqrt{T})$ regret bound. However, OGD and other projection-based OCO algorithms need to perform a Euclidean projection onto the feasible set $\mathcal{C}\subset \mathbb{R}d$ whenever their iterates step outside $\mathcal{C}$. For various sets of interests, this projection step can be computationally costly, especially when the ambient dimension is large. This has motivated the development of projection-free OCO algorithms that swap Euclidean projections for often much cheaper operations such as Linear Optimization (LO). However, state-of-the-art LO-based algorithms only achieve a suboptimal $O(T{3/4})$ regret for general OCO. In this paper, we leverage recent results in parameter-free Online Learning, and develop an OCO algorithm that makes two calls to an LO Oracle per round and achieves the near-optimal $\widetilde{O}(\sqrt{T})$ regret whenever the feasible set is strongly convex. We also present an algorithm for general convex sets that makes $\widetilde O(d)$ expected number of calls to an LO Oracle per round and guarantees a $\widetilde O(T{2/3})$ regret, improving on the previous best $O(T{3/4})$. We achieve the latter by approximating any convex set $\mathcal{C}$ by a strongly convex one, where LO can be performed using $\widetilde {O}(d)$ expected number of calls to an LO Oracle for $\mathcal{C}$.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)