Papers
Topics
Authors
Recent
2000 character limit reached

Context Limitations Make Neural Language Models More Human-Like (2205.11463v2)

Published 23 May 2022 in cs.CL

Abstract: LLMs (LMs) have been used in cognitive modeling as well as engineering studies -- they compute information-theoretic complexity metrics that simulate humans' cognitive load during reading. This study highlights a limitation of modern neural LMs as the model of choice for this purpose: there is a discrepancy between their context access capacities and that of humans. Our results showed that constraining the LMs' context access improved their simulation of human reading behavior. We also showed that LM-human gaps in context access were associated with specific syntactic constructions; incorporating syntactic biases into LMs' context access might enhance their cognitive plausibility.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com