Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Context Limitations Make Neural Language Models More Human-Like (2205.11463v2)

Published 23 May 2022 in cs.CL

Abstract: LLMs (LMs) have been used in cognitive modeling as well as engineering studies -- they compute information-theoretic complexity metrics that simulate humans' cognitive load during reading. This study highlights a limitation of modern neural LMs as the model of choice for this purpose: there is a discrepancy between their context access capacities and that of humans. Our results showed that constraining the LMs' context access improved their simulation of human reading behavior. We also showed that LM-human gaps in context access were associated with specific syntactic constructions; incorporating syntactic biases into LMs' context access might enhance their cognitive plausibility.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube