Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Diminishing Returns of Masked Language Models to Science (2205.11342v2)

Published 23 May 2022 in cs.CL and cs.LG

Abstract: Transformer-based masked LLMs such as BERT, trained on general corpora, have shown impressive performance on downstream tasks. It has also been demonstrated that the downstream task performance of such models can be improved by pretraining larger models for longer on more data. In this work, we empirically evaluate the extent to which these results extend to tasks in science. We use 14 domain-specific transformer-based models (including ScholarBERT, a new 770M-parameter science-focused masked LLM pretrained on up to 225B tokens) to evaluate the impact of training data, model size, pretraining and finetuning time on 12 downstream scientific tasks. Interestingly, we find that increasing model sizes, training data, or compute time does not always lead to significant improvements (i.e., >1% F1), if at all, in scientific information extraction tasks and offered possible explanations for the surprising performance differences.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.