Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ImGCL: Revisiting Graph Contrastive Learning on Imbalanced Node Classification (2205.11332v2)

Published 23 May 2022 in cs.LG and cs.AI

Abstract: Graph contrastive learning (GCL) has attracted a surge of attention due to its superior performance for learning node/graph representations without labels. However, in practice, the underlying class distribution of unlabeled nodes for the given graph is usually imbalanced. This highly imbalanced class distribution inevitably deteriorates the quality of learned node representations in GCL. Indeed, we empirically find that most state-of-the-art GCL methods cannot obtain discriminative representations and exhibit poor performance on imbalanced node classification. Motivated by this observation, we propose a principled GCL framework on Imbalanced node classification (ImGCL), which automatically and adaptively balances the representations learned from GCL without labels. Specifically, we first introduce the online clustering based progressively balanced sampling (PBS) method with theoretical rationale, which balances the training sets based on pseudo-labels obtained from learned representations in GCL. We then develop the node centrality based PBS method to better preserve the intrinsic structure of graphs, by upweighting the important nodes of the given graph. Extensive experiments on multiple imbalanced graph datasets and imbalanced settings demonstrate the effectiveness of our proposed framework, which significantly improves the performance of the recent state-of-the-art GCL methods. Further experimental ablations and analyses show that the ImGCL framework consistently improves the representation quality of nodes in under-represented (tail) classes.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.