Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximating CSPs with Outliers (2205.11328v1)

Published 23 May 2022 in cs.DS

Abstract: Constraint satisfaction problems (CSPs) are ubiquitous in theoretical computer science. We study the problem of StrongCSPs, i.e. instances where a large induced sub-instance has a satisfying assignment. More formally, given a CSP instance $\Psi(V, E, [k], {\Pi_{ij}}{(i,j) \in E})$ consisting of a set of vertices $V$, a set of edges $E$, alphabet $[k]$, a constraint $\Pi{ij} \subset [k] \times [k]$ for each $(i,j) \in E$, the goal of this problem is to compute the largest subset $S \subseteq V$ such that the instance induced on $S$ has an assignment that satisfies all the constraints. In this paper, we study approximation algorithms for Unique Games and related problems under the StrongCSP framework when the underlying constraint graph satisfies mild expansion properties. In particular, we show that given a Strong Unique Games instance whose optimal solution $S*$ is supported on a regular low threshold rank graph, there exists an algorithm that runs in time exponential in the threshold rank, and recovers a large satisfiable sub-instance whose size is independent on the label set size and maximum degree of the graph. Our algorithm combines the techniques of Barak-Raghavendra-Steurer (FOCS'11), Guruswami-Sinop (FOCS'11) with several new ideas and runs in time exponential in the threshold rank of the optimal set. A key component of our algorithm is a new threshold rank based spectral decomposition, which is used to compute a "large" induced subgraph of "small" threshold rank; our techniques build on the work of Oveis Gharan and Rezaei (SODA'17) and could be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.