Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Constraint Energy Minimizing Generalized Multiscale Finite Element Method for multi-continuum Richards equations (2205.11294v1)

Published 23 May 2022 in math.NA, cs.NA, and math.AP

Abstract: In fluid flow simulation, the multi-continuum model is a useful strategy. When the heterogeneity and contrast of coefficients are high, the system becomes multiscale, and some kinds of reduced-order methods are demanded. Combining these techniques with nonlinearity, we will consider in this paper a dual-continuum model which is generalized as a multi-continuum model for a coupled system of nonlinear Richards equations as unsaturated flows, in complex heterogeneous fractured porous media; and we will solve it by a novel multiscale approach utilizing the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM). In particular, such a nonlinear system will be discretized in time and then linearized by Picard iteration (whose global convergence is proved theoretically). Subsequently, we tackle the resulting linearized equations by the CEM-GMsFEM and obtain proper offline multiscale basis functions to span the multiscale space (which contains the pressure solution). More specifically, we first introduce two new sources of samples, and the GMsFEM is used over each coarse block to build local auxiliary multiscale basis functions via solving local spectral problems, that are crucial for detecting high-contrast channels. Second, per oversampled coarse region, local multiscale basis functions are created through the CEM as constrainedly minimizing an energy functional. Various numerical tests for our approach reveal that the error converges with the coarse-grid size alone and that only a few oversampling layers, as well as basis functions, are needed.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.