Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

SUGER: A Subgraph-based Graph Convolutional Network Method for Bundle Recommendation (2205.11231v1)

Published 5 May 2022 in cs.IR

Abstract: Bundle recommendation is an emerging research direction in the recommender system with the focus on recommending customized bundles of items for users. Although Graph Neural Networks (GNNs) have been applied in this problem and achieve superior performance, existing methods underexplore the graph-level GNN methods, which exhibit great potential in traditional recommender system. Furthermore, they usually lack the transferability from one domain with sufficient supervision to another domain which might suffer from the label scarcity issue. In this work, we propose a subgraph-based Graph Neural Network model, SUGER, for bundle recommendation to handle these limitations. SUGER generates heterogeneous subgraphs around the user-bundle pairs, and then maps those subgraphs to the users' preference predictions via neural relational graph propagation. Experimental results show that SUGER significantly outperforms the state-of-the-art baselines in both the basic and the transfer bundle recommendation problems.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.