Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Time-series Transformer Generative Adversarial Networks (2205.11164v1)

Published 23 May 2022 in cs.LG

Abstract: Many real-world tasks are plagued by limitations on data: in some instances very little data is available and in others, data is protected by privacy enforcing regulations (e.g. GDPR). We consider limitations posed specifically on time-series data and present a model that can generate synthetic time-series which can be used in place of real data. A model that generates synthetic time-series data has two objectives: 1) to capture the stepwise conditional distribution of real sequences, and 2) to faithfully model the joint distribution of entire real sequences. Autoregressive models trained via maximum likelihood estimation can be used in a system where previous predictions are fed back in and used to predict future ones; in such models, errors can accrue over time. Furthermore, a plausible initial value is required making MLE based models not really generative. Many downstream tasks learn to model conditional distributions of the time-series, hence, synthetic data drawn from a generative model must satisfy 1) in addition to performing 2). We present TsT-GAN, a framework that capitalises on the Transformer architecture to satisfy the desiderata and compare its performance against five state-of-the-art models on five datasets and show that TsT-GAN achieves higher predictive performance on all datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.