Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Supporting Vision-Language Model Inference with Confounder-pruning Knowledge Prompt (2205.11100v2)

Published 23 May 2022 in cs.CV

Abstract: Vision-LLMs are pre-trained by aligning image-text pairs in a common space to deal with open-set visual concepts. To boost the transferability of the pre-trained models, recent works adopt fixed or learnable prompts, i.e., classification weights are synthesized from natural language describing task-relevant categories, to reduce the gap between tasks in the training and test phases. However, how and what prompts can improve inference performance remains unclear. In this paper, we explicitly clarify the importance of including semantic information in prompts, while existing prompting methods generate prompts without exploring the semantic information of textual labels. Manually constructing prompts with rich semantics requires domain expertise and is extremely time-consuming. To cope with this issue, we propose a semantic-aware prompt learning method, namely CPKP, which retrieves an ontological knowledge graph by treating the textual label as a query to extract task-relevant semantic information. CPKP further introduces a double-tier confounder-pruning procedure to refine the derived semantic information. The graph-tier confounders are gradually identified and phased out, inspired by the principle of Granger causality. The feature-tier confounders are demolished by following the maximum entropy principle in information theory. Empirically, the evaluations demonstrate the effectiveness of CPKP, e.g., with two shots, CPKP outperforms the manual-prompt method by 4.64% and the learnable-prompt method by 1.09% on average, and the superiority of CPKP in domain generalization compared to benchmark approaches. Our implementation is available at https://github.com/Mowenyii/CPKP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com