Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible and Hierarchical Prior for Bayesian Nonnegative Matrix Factorization (2205.11025v2)

Published 23 May 2022 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: In this paper, we introduce a probabilistic model for learning nonnegative matrix factorization (NMF) that is commonly used for predicting missing values and finding hidden patterns in the data, in which the matrix factors are latent variables associated with each data dimension. The nonnegativity constraint for the latent factors is handled by choosing priors with support on the nonnegative subspace. Bayesian inference procedure based on Gibbs sampling is employed. We evaluate the model on several real-world datasets including MovieLens 100K and MovieLens 1M with different sizes and dimensions and show that the proposed Bayesian NMF GRRN model leads to better predictions and avoids overfitting compared to existing Bayesian NMF approaches.

Citations (6)

Summary

We haven't generated a summary for this paper yet.