Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Muti-expert Distribution Calibration for Long-tailed Video Classification (2205.10788v2)

Published 22 May 2022 in cs.CV

Abstract: Most existing state-of-the-art video classification methods assume that the training data obey a uniform distribution. However, video data in the real world typically exhibit an imbalanced long-tailed class distribution, resulting in a model bias towards head class and relatively low performance on tail class. While the current long-tailed classification methods usually focus on image classification, adapting it to video data is not a trivial extension. We propose an end-to-end multi-expert distribution calibration method to address these challenges based on two-level distribution information. The method jointly considers the distribution of samples in each class (intra-class distribution) and the overall distribution of diverse data (inter-class distribution) to solve the issue of imbalanced data under long-tailed distribution. By modeling the two-level distribution information, the model can jointly consider the head classes and the tail classes and significantly transfer the knowledge from the head classes to improve the performance of the tail classes. Extensive experiments verify that our method achieves state-of-the-art performance on the long-tailed video classification task.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.