Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Preparing data for pathological artificial intelligence with clinical-grade performance (2205.10748v1)

Published 22 May 2022 in eess.IV, cs.AI, and cs.CV

Abstract: [Purpose] The pathology is decisive for disease diagnosis, but relies heavily on the experienced pathologists. Recently, pathological artificial intelligence (PAI) is thought to improve diagnostic accuracy and efficiency. However, the high performance of PAI based on deep learning in the laboratory generally cannot be reproduced in the clinic. [Methods] Because the data preparation is important for PAI, the paper has reviewed PAI-related studies in the PubMed database published from January 2017 to February 2022, and 118 studies were included. The in-depth analysis of methods for preparing data is performed, including obtaining slides of pathological tissue, cleaning, screening, and then digitizing. Expert review, image annotation, dataset division for model training and validation are also discussed. We further discuss the reasons why the high performance of PAI is not reproducible in the clinical practices and show some effective ways to improve clinical performances of PAI. [Results] The robustness of PAI depend on randomized collection of representative disease slides, including rigorous quality control and screening, correction of digital discrepancies, reasonable annotation, and the amount of data. The digital pathology is fundamental of clinical-grade PAI, and the techniques of data standardization and weakly supervised learning methods based on whole slide image (WSI) are effective ways to overcome obstacles of performance reproduction. [Conclusion] The representative data, the amount of labeling and consistency from multi-centers is the key to performance reproduction. The digital pathology for clinical diagnosis, data standardization and technique of WSI-based weakly supervised learning hopefully build clinical-grade PAI. Keywords: pathological artificial intelligence; data preparation; clinical-grade; deep learning

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.