Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vision Transformers in 2022: An Update on Tiny ImageNet (2205.10660v1)

Published 21 May 2022 in cs.CV

Abstract: The recent advances in image transformers have shown impressive results and have largely closed the gap between traditional CNN architectures. The standard procedure is to train on large datasets like ImageNet-21k and then finetune on ImageNet-1k. After finetuning, researches will often consider the transfer learning performance on smaller datasets such as CIFAR-10/100 but have left out Tiny ImageNet. This paper offers an update on vision transformers' performance on Tiny ImageNet. I include Vision Transformer (ViT) , Data Efficient Image Transformer (DeiT), Class Attention in Image Transformer (CaiT), and Swin Transformers. In addition, Swin Transformers beats the current state-of-the-art result with a validation accuracy of 91.35%. Code is available here: https://github.com/ehuynh1106/TinyImageNet-Transformers

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com