Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning to Dynamically Select Cost Optimal Schedulers in Cloud Computing Environments (2205.10640v1)

Published 21 May 2022 in cs.DC and cs.PF

Abstract: The operational cost of a cloud computing platform is one of the most significant Quality of Service (QoS) criteria for schedulers, crucial to keep up with the growing computational demands. Several data-driven deep neural network (DNN)-based schedulers have been proposed in recent years that outperform alternative approaches by providing scalable and effective resource management for dynamic workloads. However, state-of-the-art schedulers rely on advanced DNNs with high computational requirements, implying high scheduling costs. In non-stationary contexts, the most sophisticated schedulers may not always be required, and it may be sufficient to rely on low-cost schedulers to temporarily save operational costs. In this work, we propose MetaNet, a surrogate model that predicts the operational costs and scheduling overheads of a large number of DNN-based schedulers and chooses one on-the-fly to jointly optimize job scheduling and execution costs. This facilitates improvements in execution costs, energy usage and service level agreement violations of up to 11%, 43% and 13% compared to the state-of-the-art methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.