Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improvements to Self-Supervised Representation Learning for Masked Image Modeling (2205.10546v1)

Published 21 May 2022 in cs.CV

Abstract: This paper explores improvements to the masked image modeling (MIM) paradigm. The MIM paradigm enables the model to learn the main object features of the image by masking the input image and predicting the masked part by the unmasked part. We found the following three main directions for MIM to be improved. First, since both encoders and decoders contribute to representation learning, MIM uses only encoders for downstream tasks, which ignores the impact of decoders on representation learning. Although the MIM paradigm already employs small decoders with asymmetric structures, we believe that continued reduction of decoder parameters is beneficial to improve the representational learning capability of the encoder . Second, MIM solves the image prediction task by training the encoder and decoder together , and does not design a separate task for the encoder . To further enhance the performance of the encoder when performing downstream tasks, we designed the encoder for the tasks of comparative learning and token position prediction. Third, since the input image may contain background and other objects, and the proportion of each object in the image varies, reconstructing the tokens related to the background or to other objects is not meaningful for MIM to understand the main object representations. Therefore we use ContrastiveCrop to crop the input image so that the input image contains as much as possible only the main objects. Based on the above three improvements to MIM, we propose a new model, Contrastive Masked AutoEncoders (CMAE). We achieved a Top-1 accuracy of 65.84% on tinyimagenet using the ViT-B backbone, which is +2.89 outperforming the MAE of competing methods when all conditions are equal. Code will be made available.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube