Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Named Entity Linking with Entity Representation by Multiple Embeddings (2205.10498v2)

Published 21 May 2022 in cs.CL

Abstract: We propose a simple and practical method for named entity linking (NEL), based on entity representation by multiple embeddings. To explore this method, and to review its dependency on parameters, we measure its performance on Namesakes, a highly challenging dataset of ambiguously named entities. Our observations suggest that the minimal number of mentions required to create a knowledge base (KB) entity is very important for NEL performance. The number of embeddings is less important and can be kept small, within as few as 10 or less. We show that our representations of KB entities can be adjusted using only KB data, and the adjustment can improve NEL performance. We also compare NEL performance of embeddings obtained from tuning LLM on diverse news texts as opposed to tuning on more uniform texts from public datasets XSum, CNN / Daily Mail. We found that tuning on diverse news provides better embeddings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.