Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic MPC with robustness to bounded parametric uncertainty (2205.10275v1)

Published 20 May 2022 in eess.SY and cs.SY

Abstract: The performance of model-based control techniques strongly depends on the quality of the employed dynamics model. If strong guarantees are desired, it is therefore common to robustly treat all possible sources of uncertainty, such as model inaccuracies or external disturbances. This, however, can result in overly conservative control strategies. In this paper, we present a stochastic model predictive control approach for discrete-time LTI systems subject to bounded parametric uncertainty and potentially unbounded stochastic additive noise. The proposed scheme makes use of homothetic tubes along the prediction horizon for a robust treatment of parametric uncertainty. Stochastic noise is handled by non-conservatively tightening constraints using the concept of probabilistic reachable sets (PRS). In order to accommodate all possible parametric uncertainties, we provide a strategy for generating "robustified" PRS based only on first and second moments of the noise sequence. In the case of quadratic cost functions, and under a further i.i.d. assumption on the noise distribution, we also provide an average asymptotic performance bound for the l2-norm of the closed-loop state. Finally, we demonstrate our scheme on both an illustrative example, and in a building temperature control problem.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.