Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FedAdapter: Efficient Federated Learning for Modern NLP (2205.10162v2)

Published 20 May 2022 in cs.LG

Abstract: Transformer-based pre-trained models have revolutionized NLP for superior performance and generality. Fine-tuning pre-trained models for downstream tasks often requires private data, for which federated learning is the de-facto approach (i.e., FedNLP). However, our measurements show that FedNLP is prohibitively slow due to the large model sizes and the resultant high network/computation cost. Towards practical FedNLP, we identify as the key building blocks adapters, small bottleneck modules inserted at a variety of model layers. A key challenge is to properly configure the depth and width of adapters, to which the training speed and efficiency is highly sensitive. No silver-bullet configuration exists: the optimal choice varies across downstream NLP tasks, desired model accuracy, and mobile resources. To automate adapter configuration, we propose FedAdapter, a framework that enhances the existing FedNLP with two novel designs. First, FedAdapter progressively upgrades the adapter configuration throughout a training session; the principle is to quickly learn shallow knowledge by only training fewer and smaller adapters at the model's top layers, and incrementally learn deep knowledge by incorporating deeper and larger adapters. Second, FedAdapter continuously profiles future adapter configurations by allocating participant devices to trial groups. Extensive experiments show that FedAdapter can reduce FedNLP's model convergence delay to no more than several hours, which is up to 155.5$\times$ faster compared to vanilla FedNLP and 48$\times$ faster compared to strong baselines.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube