Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contrastive Learning with Cross-Modal Knowledge Mining for Multimodal Human Activity Recognition (2205.10071v1)

Published 20 May 2022 in cs.CV and cs.AI

Abstract: Human Activity Recognition is a field of research where input data can take many forms. Each of the possible input modalities describes human behaviour in a different way, and each has its own strengths and weaknesses. We explore the hypothesis that leveraging multiple modalities can lead to better recognition. Since manual annotation of input data is expensive and time-consuming, the emphasis is made on self-supervised methods which can learn useful feature representations without any ground truth labels. We extend a number of recent contrastive self-supervised approaches for the task of Human Activity Recognition, leveraging inertial and skeleton data. Furthermore, we propose a flexible, general-purpose framework for performing multimodal self-supervised learning, named Contrastive Multiview Coding with Cross-Modal Knowledge Mining (CMC-CMKM). This framework exploits modality-specific knowledge in order to mitigate the limitations of typical self-supervised frameworks. The extensive experiments on two widely-used datasets demonstrate that the suggested framework significantly outperforms contrastive unimodal and multimodal baselines on different scenarios, including fully-supervised fine-tuning, activity retrieval and semi-supervised learning. Furthermore, it shows performance competitive even compared to supervised methods.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube