Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Learning with Cross-Modal Knowledge Mining for Multimodal Human Activity Recognition (2205.10071v1)

Published 20 May 2022 in cs.CV and cs.AI

Abstract: Human Activity Recognition is a field of research where input data can take many forms. Each of the possible input modalities describes human behaviour in a different way, and each has its own strengths and weaknesses. We explore the hypothesis that leveraging multiple modalities can lead to better recognition. Since manual annotation of input data is expensive and time-consuming, the emphasis is made on self-supervised methods which can learn useful feature representations without any ground truth labels. We extend a number of recent contrastive self-supervised approaches for the task of Human Activity Recognition, leveraging inertial and skeleton data. Furthermore, we propose a flexible, general-purpose framework for performing multimodal self-supervised learning, named Contrastive Multiview Coding with Cross-Modal Knowledge Mining (CMC-CMKM). This framework exploits modality-specific knowledge in order to mitigate the limitations of typical self-supervised frameworks. The extensive experiments on two widely-used datasets demonstrate that the suggested framework significantly outperforms contrastive unimodal and multimodal baselines on different scenarios, including fully-supervised fine-tuning, activity retrieval and semi-supervised learning. Furthermore, it shows performance competitive even compared to supervised methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.