Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Towards Extremely Fast Bilevel Optimization with Self-governed Convergence Guarantees (2205.10054v1)

Published 20 May 2022 in math.OC and cs.LG

Abstract: Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning and vision fields. The validity of existing works heavily relies on solving a series of approximation subproblems with extraordinarily high accuracy. Unfortunately, to achieve the approximation accuracy requires executing a large quantity of time-consuming iterations and computational burden is naturally caused. This paper is thus devoted to address this critical computational issue. In particular, we propose a single-level formulation to uniformly understand existing explicit and implicit Gradient-based BLOs (GBLOs). This together with our designed counter-example can clearly illustrate the fundamental numerical and theoretical issues of GBLOs and their naive accelerations. By introducing the dual multipliers as a new variable, we then establish Bilevel Alternating Gradient with Dual Correction (BAGDC), a general framework, which significantly accelerates different categories of existing methods by taking specific settings. A striking feature of our convergence result is that, compared to those original unaccelerated GBLO versions, the fast BAGDC admits a unified non-asymptotic convergence theory towards stationarity. A variety of numerical experiments have also been conducted to demonstrate the superiority of the proposed algorithmic framework.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.