Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Neural Additive Models for Nowcasting (2205.10020v1)

Published 20 May 2022 in cs.LG and cs.AI

Abstract: Deep neural networks (DNNs) are one of the most highlighted methods in machine learning. However, as DNNs are black-box models, they lack explanatory power for their predictions. Recently, neural additive models (NAMs) have been proposed to provide this power while maintaining high prediction performance. In this paper, we propose a novel NAM approach for multivariate nowcasting (NC) problems, which comprise an important focus area of machine learning. For the multivariate time-series data used in NC problems, explanations should be considered for every input value to the variables at distinguishable time steps. By employing generalized additive models, the proposed NAM-NC successfully explains each input value's importance for multiple variables and time steps. Experimental results involving a toy example and two real-world datasets show that the NAM-NC predicts multivariate time-series data as accurately as state-of-the-art neural networks, while also providing the explanatory importance of each input value. We also examine parameter-sharing networks using NAM-NC to decrease their complexity, and NAM-MC's hard-tied feature net extracted explanations with good performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube