Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep transfer learning for image classification: a survey (2205.09904v1)

Published 20 May 2022 in cs.CV and cs.AI

Abstract: Deep neural networks such as convolutional neural networks (CNNs) and transformers have achieved many successes in image classification in recent years. It has been consistently demonstrated that best practice for image classification is when large deep models can be trained on abundant labelled data. However there are many real world scenarios where the requirement for large amounts of training data to get the best performance cannot be met. In these scenarios transfer learning can help improve performance. To date there have been no surveys that comprehensively review deep transfer learning as it relates to image classification overall. However, several recent general surveys of deep transfer learning and ones that relate to particular specialised target image classification tasks have been published. We believe it is important for the future progress in the field that all current knowledge is collated and the overarching patterns analysed and discussed. In this survey we formally define deep transfer learning and the problem it attempts to solve in relation to image classification. We survey the current state of the field and identify where recent progress has been made. We show where the gaps in current knowledge are and make suggestions for how to progress the field to fill in these knowledge gaps. We present a new taxonomy of the applications of transfer learning for image classification. This taxonomy makes it easier to see overarching patterns of where transfer learning has been effective and, where it has failed to fulfill its potential. This also allows us to suggest where the problems lie and how it could be used more effectively. We show that under this new taxonomy, many of the applications where transfer learning has been shown to be ineffective or even hinder performance are to be expected when taking into account the source and target datasets and the techniques used.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.