Papers
Topics
Authors
Recent
2000 character limit reached

Time Series Anomaly Detection via Reinforcement Learning-Based Model Selection (2205.09884v4)

Published 19 May 2022 in cs.LG

Abstract: Time series anomaly detection has been recognized as of critical importance for the reliable and efficient operation of real-world systems. Many anomaly detection methods have been developed based on various assumptions on anomaly characteristics. However, due to the complex nature of real-world data, different anomalies within a time series usually have diverse profiles supporting different anomaly assumptions. This makes it difficult to find a single anomaly detector that can consistently outperform other models. In this work, to harness the benefits of different base models, we propose a reinforcement learning-based model selection framework. Specifically, we first learn a pool of different anomaly detection models, and then utilize reinforcement learning to dynamically select a candidate model from these base models. Experiments on real-world data have demonstrated that the proposed strategy can indeed outplay all baseline models in terms of overall performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.