Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time Series Anomaly Detection via Reinforcement Learning-Based Model Selection (2205.09884v4)

Published 19 May 2022 in cs.LG

Abstract: Time series anomaly detection has been recognized as of critical importance for the reliable and efficient operation of real-world systems. Many anomaly detection methods have been developed based on various assumptions on anomaly characteristics. However, due to the complex nature of real-world data, different anomalies within a time series usually have diverse profiles supporting different anomaly assumptions. This makes it difficult to find a single anomaly detector that can consistently outperform other models. In this work, to harness the benefits of different base models, we propose a reinforcement learning-based model selection framework. Specifically, we first learn a pool of different anomaly detection models, and then utilize reinforcement learning to dynamically select a candidate model from these base models. Experiments on real-world data have demonstrated that the proposed strategy can indeed outplay all baseline models in terms of overall performance.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.