Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Understanding Gradient Descent on Edge of Stability in Deep Learning (2205.09745v3)

Published 19 May 2022 in cs.LG and math.OC

Abstract: Deep learning experiments by Cohen et al. [2021] using deterministic Gradient Descent (GD) revealed an Edge of Stability (EoS) phase when learning rate (LR) and sharpness (i.e., the largest eigenvalue of Hessian) no longer behave as in traditional optimization. Sharpness stabilizes around $2/$LR and loss goes up and down across iterations, yet still with an overall downward trend. The current paper mathematically analyzes a new mechanism of implicit regularization in the EoS phase, whereby GD updates due to non-smooth loss landscape turn out to evolve along some deterministic flow on the manifold of minimum loss. This is in contrast to many previous results about implicit bias either relying on infinitesimal updates or noise in gradient. Formally, for any smooth function $L$ with certain regularity condition, this effect is demonstrated for (1) Normalized GD, i.e., GD with a varying LR $\eta_t =\frac{\eta}{| \nabla L(x(t)) |}$ and loss $L$; (2) GD with constant LR and loss $\sqrt{L- \min_x L(x)}$. Both provably enter the Edge of Stability, with the associated flow on the manifold minimizing $\lambda_{1}(\nabla2 L)$. The above theoretical results have been corroborated by an experimental study.

Citations (80)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.