Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A fast dynamic smooth adaptive meshing scheme with applications to compressible flow (2205.09463v2)

Published 19 May 2022 in physics.comp-ph, cs.NA, math.NA, and physics.flu-dyn

Abstract: We develop a fast-running smooth adaptive meshing (SAM) algorithm for dynamic curvilinear mesh generation, which is based on a fast solution strategy of the time-dependent Monge-Amp`{e}re (MA) equation, $\det \nabla \psi(x,t) = \mathsf{G} \circ\psi (x,t)$. The novelty of our approach is a new so-called perturbation formulation of MA, which constructs the solution map $\psi$ via composition of a sequence of near-identity deformations of a reference mesh. Then, we formulate a new version of the deformation method that results in a simple, fast, and high-order accurate numerical scheme and a dynamic SAM algorithm that is of optimal complexity when applied to time-dependent mesh generation for solutions to hyperbolic systems such as the Euler equations of gas dynamics. We perform a series of challenging 2$D$ and 3$D$ mesh generation experiments for grids with large deformations, and demonstrate that SAM is able to produce smooth meshes comparable to state-of-the-art solvers, while running approximately 200 times faster. The SAM algorithm is then coupled to a simple Arbitrary Lagrangian Eulerian (ALE) scheme for 2$D$ gas dynamics. Specifically, we implement the $C$-method and develop a new ALE interface tracking algorithm for contact discontinuities. We perform numerical experiments for both the Noh implosion problem as well as a classical Rayleigh-Taylor instability problem. Results confirm that low-resolution simulations using our SAM-ALE algorithm compare favorably with high-resolution uniform mesh runs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube