Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Transformers as Neural Augmentors: Class Conditional Sentence Generation via Variational Bayes (2205.09391v1)

Published 19 May 2022 in cs.CL and cs.LG

Abstract: Data augmentation methods for Natural Language Processing tasks are explored in recent years, however they are limited and it is hard to capture the diversity on sentence level. Besides, it is not always possible to perform data augmentation on supervised tasks. To address those problems, we propose a neural data augmentation method, which is a combination of Conditional Variational Autoencoder and encoder-decoder Transformer model. While encoding and decoding the input sentence, our model captures the syntactic and semantic representation of the input language with its class condition. Following the developments in the past years on pre-trained LLMs, we train and evaluate our models on several benchmarks to strengthen the downstream tasks. We compare our method with 3 different augmentation techniques. The presented results show that, our model increases the performance of current models compared to other data augmentation techniques with a small amount of computation power.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.