Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Continual Pre-Training Mitigates Forgetting in Language and Vision (2205.09357v1)

Published 19 May 2022 in cs.LG and cs.AI

Abstract: Pre-trained models are nowadays a fundamental component of machine learning research. In continual learning, they are commonly used to initialize the model before training on the stream of non-stationary data. However, pre-training is rarely applied during continual learning. We formalize and investigate the characteristics of the continual pre-training scenario in both language and vision environments, where a model is continually pre-trained on a stream of incoming data and only later fine-tuned to different downstream tasks. We show that continually pre-trained models are robust against catastrophic forgetting and we provide strong empirical evidence supporting the fact that self-supervised pre-training is more effective in retaining previous knowledge than supervised protocols. Code is provided at https://github.com/AndreaCossu/continual-pretraining-nlp-vision .

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.