Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Joint Device Selection and Power Control for Wireless Federated Learning (2205.09306v1)

Published 19 May 2022 in cs.IT, eess.SP, and math.IT

Abstract: This paper studies the joint device selection and power control scheme for wireless federated learning (FL), considering both the downlink and uplink communications between the parameter server (PS) and the terminal devices. In each round of model training, the PS first broadcasts the global model to the terminal devices in an analog fashion, and then the terminal devices perform local training and upload the updated model parameters to the PS via over-the-air computation (AirComp). First, we propose an AirComp-based adaptive reweighing scheme for the aggregation of local updated models, where the model aggregation weights are directly determined by the uplink transmit power values of the selected devices and which enables the joint learning and communication optimization simply by the device selection and power control. Furthermore, we provide a convergence analysis for the proposed wireless FL algorithm and the upper bound on the expected optimality gap between the expected and optimal global loss values is derived. With instantaneous channel state information (CSI), we formulate the optimality gap minimization problems under both the individual and sum uplink transmit power constraints, respectively, which are shown to be solved by the semidefinite programming (SDR) technique. Numerical results reveal that our proposed wireless FL algorithm achieves close to the best performance by using the ideal FedAvg scheme with error-free model exchange and full device participation.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.