Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Towards Applicable Reinforcement Learning: Improving the Generalization and Sample Efficiency with Policy Ensemble (2205.09284v1)

Published 19 May 2022 in cs.LG and cs.AI

Abstract: It is challenging for reinforcement learning (RL) algorithms to succeed in real-world applications like financial trading and logistic system due to the noisy observation and environment shifting between training and evaluation. Thus, it requires both high sample efficiency and generalization for resolving real-world tasks. However, directly applying typical RL algorithms can lead to poor performance in such scenarios. Considering the great performance of ensemble methods on both accuracy and generalization in supervised learning (SL), we design a robust and applicable method named Ensemble Proximal Policy Optimization (EPPO), which learns ensemble policies in an end-to-end manner. Notably, EPPO combines each policy and the policy ensemble organically and optimizes both simultaneously. In addition, EPPO adopts a diversity enhancement regularization over the policy space which helps to generalize to unseen states and promotes exploration. We theoretically prove EPPO increases exploration efficacy, and through comprehensive experimental evaluations on various tasks, we demonstrate that EPPO achieves higher efficiency and is robust for real-world applications compared with vanilla policy optimization algorithms and other ensemble methods. Code and supplemental materials are available at https://seqml.github.io/eppo.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com