Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Deterministic Near-Optimal Distributed Listing of Cliques (2205.09245v1)

Published 18 May 2022 in cs.DC and cs.DS

Abstract: The importance of classifying connections in large graphs has been the motivation for a rich line of work on distributed subgraph finding that has led to exciting recent breakthroughs. A crucial aspect that remained open was whether deterministic algorithms can be as efficient as their randomized counterparts, where the latter are known to be tight up to polylogarithmic factors. We give deterministic distributed algorithms for listing cliques of size $p$ in $n{1 - 2/p + o(1)}$ rounds in the \congest model. For triangles, our $n{1/3+o(1)}$ round complexity improves upon the previous state of the art of $n{2/3+o(1)}$ rounds [Chang and Saranurak, FOCS 2020]. For cliques of size $p \geq 4$, ours are the first non-trivial deterministic distributed algorithms. Given known lower bounds, for all values $p \geq 3$ our algorithms are tight up to a $n{o(1)}$ subpolynomial factor, which comes from the deterministic routing procedure we use.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.