Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Slowly Changing Adversarial Bandit Algorithms are Efficient for Discounted MDPs (2205.09056v3)

Published 18 May 2022 in cs.LG

Abstract: Reinforcement learning generalizes multi-armed bandit problems with additional difficulties of a longer planning horizon and unknown transition kernel. We explore a black-box reduction from discounted infinite-horizon tabular reinforcement learning to multi-armed bandits, where, specifically, an independent bandit learner is placed in each state. We show that, under ergodicity and fast mixing assumptions, any slowly changing adversarial bandit algorithm achieving optimal regret in the adversarial bandit setting can also attain optimal expected regret in infinite-horizon discounted Markov decision processes, with respect to the number of rounds $T$. Furthermore, we examine our reduction using a specific instance of the exponential-weight algorithm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.