Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A weakly supervised framework for high-resolution crop yield forecasts (2205.09016v1)

Published 18 May 2022 in cs.LG

Abstract: Predictor inputs and label data for crop yield forecasting are not always available at the same spatial resolution. We propose a deep learning framework that uses high resolution inputs and low resolution labels to produce crop yield forecasts for both spatial levels. The forecasting model is calibrated by weak supervision from low resolution crop area and yield statistics. We evaluated the framework by disaggregating regional yields in Europe from parent statistical regions to sub-regions for five countries (Germany, Spain, France, Hungary, Italy) and two crops (soft wheat and potatoes). Performance of weakly supervised models was compared with linear trend models and Gradient-Boosted Decision Trees (GBDT). Higher resolution crop yield forecasts are useful to policymakers and other stakeholders. Weakly supervised deep learning methods provide a way to produce such forecasts even in the absence of high resolution yield data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.