Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Probability trees and the value of a single intervention (2205.08779v1)

Published 18 May 2022 in cs.LG and stat.ME

Abstract: The most fundamental problem in statistical causality is determining causal relationships from limited data. Probability trees, which combine prior causal structures with Bayesian updates, have been suggested as a possible solution. In this work, we quantify the information gain from a single intervention and show that both the anticipated information gain, prior to making an intervention, and the expected gain from an intervention have simple expressions. This results in an active-learning method that simply selects the intervention with the highest anticipated gain, which we illustrate through several examples. Our work demonstrates how probability trees, and Bayesian estimation of their parameters, offer a simple yet viable approach to fast causal induction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)