Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability trees and the value of a single intervention (2205.08779v1)

Published 18 May 2022 in cs.LG and stat.ME

Abstract: The most fundamental problem in statistical causality is determining causal relationships from limited data. Probability trees, which combine prior causal structures with Bayesian updates, have been suggested as a possible solution. In this work, we quantify the information gain from a single intervention and show that both the anticipated information gain, prior to making an intervention, and the expected gain from an intervention have simple expressions. This results in an active-learning method that simply selects the intervention with the highest anticipated gain, which we illustrate through several examples. Our work demonstrates how probability trees, and Bayesian estimation of their parameters, offer a simple yet viable approach to fast causal induction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tue Herlau (10 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.