Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Revisiting PINNs: Generative Adversarial Physics-informed Neural Networks and Point-weighting Method (2205.08754v1)

Published 18 May 2022 in cs.LG

Abstract: Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs), and have been widely used in a variety of PDE problems. However, there still remain some challenges in the application of PINNs: 1) the mechanism of PINNs is unsuitable (at least cannot be directly applied) to exploiting a small size of (usually very few) extra informative samples to refine the networks; and 2) the efficiency of training PINNs often becomes low for some complicated PDEs. In this paper, we propose the generative adversarial physics-informed neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs, to improve the performance of PINNs by exploiting only a small size of exact solutions to the PDEs. Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs, where the weight of each sample point is adaptively updated at each training iteration. The numerical experiments show that GA-PINNs outperform PINNs in many well-known PDEs and the PW method also improves the efficiency of training PINNs and GA-PINNs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.