Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Transfer Learning for Wi-Fi Sensing (2205.08590v1)

Published 17 May 2022 in cs.LG, cs.NI, eess.SP, and quant-ph

Abstract: Beyond data communications, commercial-off-the-shelf Wi-Fi devices can be used to monitor human activities, track device locomotion, and sense the ambient environment. In particular, spatial beam attributes that are inherently available in the 60-GHz IEEE 802.11ad/ay standards have shown to be effective in terms of overhead and channel measurement granularity for these indoor sensing tasks. In this paper, we investigate transfer learning to mitigate domain shift in human monitoring tasks when Wi-Fi settings and environments change over time. As a proof-of-concept study, we consider quantum neural networks (QNN) as well as classical deep neural networks (DNN) for the future quantum-ready society. The effectiveness of both DNN and QNN is validated by an in-house experiment for human pose recognition, achieving greater than 90% accuracy with a limited data size.

Citations (14)

Summary

We haven't generated a summary for this paper yet.