Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hierarchical Distribution-Aware Testing of Deep Learning (2205.08589v2)

Published 17 May 2022 in cs.SE, cs.AI, and cs.LG

Abstract: Deep Learning (DL) is increasingly used in safety-critical applications, raising concerns about its reliability. DL suffers from a well-known problem of lacking robustness, especially when faced with adversarial perturbations known as Adversarial Examples (AEs). Despite recent efforts to detect AEs using advanced attack and testing methods, these approaches often overlook the input distribution and perceptual quality of the perturbations. As a result, the detected AEs may not be relevant in practical applications or may appear unrealistic to human observers. This can waste testing resources on rare AEs that seldom occur during real-world use, limiting improvements in DL model dependability. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the feature level distribution and the pixel level distribution, capturing the perceptual quality of adversarial perturbations. The two considerations are encoded by a novel hierarchical mechanism. First, we select test seeds based on the density of feature level distribution and the vulnerability of adversarial robustness. The vulnerability of test seeds are indicated by the auxiliary information, that are highly correlated with local robustness. Given a test seed, we then develop a novel genetic algorithm based local test case generation method, in which two fitness functions work alternatively to control the perceptual quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions is superior to the state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only detecting imperceptible AEs but also improving the overall robustness of the DL model under testing.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.