Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Streaming Noise Context Aware Enhancement For Automatic Speech Recognition in Multi-Talker Environments (2205.08555v1)

Published 17 May 2022 in eess.AS and cs.SD

Abstract: One of the most challenging scenarios for smart speakers is multi-talker, when target speech from the desired speaker is mixed with interfering speech from one or more speakers. A smart assistant needs to determine which voice to recognize and which to ignore and it needs to do so in a streaming, low-latency manner. This work presents two multi-microphone speech enhancement algorithms targeted at this scenario. Targeting on-device use-cases, we assume that the algorithm has access to the signal before the hotword, which is referred to as the noise context. First is the Context Aware Beamformer which uses the noise context and detected hotword to determine how to target the desired speaker. The second is an adaptive noise cancellation algorithm called Speech Cleaner which trains a filter using the noise context. It is demonstrated that the two algorithms are complementary in the signal-to-noise ratio conditions under which they work well. We also propose an algorithm to select which one to use based on estimated SNR. When using 3 microphone channels, the final system achieves a relative word error rate reduction of 55% at -12dB, and 43\% at 12dB.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.