Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma (2205.08532v5)

Published 17 May 2022 in cs.DS, cs.CR, and stat.ML

Abstract: We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d2)$ samples, and in spectral norm requires $\Omega(d{3/2})$ samples, both matching upper bounds up to logarithmic factors. The latter bound verifies the existence of a conjectured statistical gap between the private and the non-private sample complexities for spectral estimation of Gaussian covariances. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon, 0)$-differential privacy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gautam Kamath (68 papers)
  2. Argyris Mouzakis (6 papers)
  3. Vikrant Singhal (14 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.