Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails (2205.08494v3)

Published 17 May 2022 in math.ST, cs.DS, math.PR, and stat.TH

Abstract: We provide an estimator of the covariance matrix that achieves the optimal rate of convergence (up to constant factors) in the operator norm under two standard notions of data contamination: We allow the adversary to corrupt an $\eta$-fraction of the sample arbitrarily, while the distribution of the remaining data points only satisfies that the $L_{p}$-marginal moment with some $p \ge 4$ is equivalent to the corresponding $L_2$-marginal moment. Despite requiring the existence of only a few moments, our estimator achieves the same tail estimates as if the underlying distribution were Gaussian. As a part of our analysis, we prove a dimension-free Bai-Yin type theorem in the regime $p > 4$.

Citations (21)

Summary

We haven't generated a summary for this paper yet.