Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Secure Summation: Capacity Region, Groupwise Key, and Feasibility (2205.08458v1)

Published 17 May 2022 in cs.IT and math.IT

Abstract: The secure summation problem is considered, where $K$ users, each holds an input, wish to compute the sum of their inputs at a server securely, i.e., without revealing any information beyond the sum even if the server may collude with any set of up to $T$ users. First, we prove a folklore result for secure summation - to compute $1$ bit of the sum securely, each user needs to send at least $1$ bit to the server, each user needs to hold a key of at least $1$ bit, and all users need to hold collectively some key variables of at least $K-1$ bits. Next, we focus on the symmetric groupwise key setting, where every group of $G$ users share an independent key. We show that for symmetric groupwise keys with group size $G$, when $G > K-T$, the secure summation problem is not feasible; when $G \leq K-T$, to compute $1$ bit of the sum securely, each user needs to send at least $1$ bit to the server and the size of each groupwise key is at least $(K-T-1)/\binom{K-T}{G}$ bits. Finally, we relax the symmetry assumption on the groupwise keys and the colluding user sets; we allow any arbitrary group of users to share an independent key and any arbitrary group of users to collude with the server. For such a general groupwise key and colluding user setting, we show that secure summation is feasible if and only if the hypergraph, where each node is a user and each edge is a group of users sharing the same key, is connected after removing the nodes corresponding to any colluding set of users and their incident edges.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)