Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved Utility Analysis of Private CountSketch (2205.08397v2)

Published 17 May 2022 in cs.DS and cs.CR

Abstract: Sketching is an important tool for dealing with high-dimensional vectors that are sparse (or well-approximated by a sparse vector), especially useful in distributed, parallel, and streaming settings. It is known that sketches can be made differentially private by adding noise according to the sensitivity of the sketch, and this has been used in private analytics and federated learning settings. The post-processing property of differential privacy implies that all estimates computed from the sketch can be released within the given privacy budget. In this paper we consider the classical CountSketch, made differentially private with the Gaussian mechanism, and give an improved analysis of its estimation error. Perhaps surprisingly, the privacy-utility trade-off is essentially the best one could hope for, independent of the number of repetitions in CountSketch: The error is almost identical to the error from non-private CountSketch plus the noise needed to make the vector private in the original, high-dimensional domain.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.